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Piezoelectric-based resonance frequency detuning can alleviate unwanted vibration of turbomachinery blades,
thus reducing the dangers of high-cycle fatigue while also decreasing the blade weight. This semiactive approach
applies to structures that are subjected to frequency-sweep excitation and involves altering the structural stiffness
(here, by switching the piezoelectric electrical boundary conditions) to avoid a resonant condition, thus limiting the
blade response. Detuning requires two switches per resonance/excitation frequency crossing, including a switch back
to the original the original state, many fewer than other semiactive approaches that require four switches per cycle of
vibration. Resonance frequency detuning applies to any mode of vibration with a positive electromechanical coupling
coefficient, and it provides the greatest normalized vibration reduction for slow sweeps, low damping, and high
coupling coefficient. Yet even for a moderate sweep rate « = 10~ and modal damping ¢ = 0.1%), optimally detuning
a structure with an electromechanical coupling coefficient k2 = 10% provides the same vibration reduction as
increasing either the sweep rate or modal damping by an order of magnitude. With a lower sweep rate « = 10~ and
modal damping ¢ = 0.01%, detuning with a coupling coefficient of only k> = 3% provides equivalent vibration
reduction as an order of magnitude increase in sweep rate or modal damping.

Nomenclature
= damping matrix terms
elastic coefficients
electric displacement
electric field
generalized forces
stiffness matrix terms
electromechanical coupling coefficient
mass matrix terms
= nondimensional piezoelectric charge displacement
(scaled by blocked static charge displacement)
= electromechanical coupling
mechanical strain
mechanical stress
= nondimensional time (scaled by structural
open-circuit natural frequency)
nondimensional piezoelectric voltage (scaled by
blocked static voltage)
generalized coordinates
nondimensional structural displacement (scaled by
open-circuit static displacement)
linear frequency-sweep rate
dielectric permittivity
modal mechanical damping ratio
phase of excitation
constant part of phase of excitation
blade rotation speed
= frequency
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Subscripts

c = coupled electromechanical terms
e = electrical terms

g = rotation-dependent terms

m = mechanical terms

oc = open-circuit condition

sc = short-circuit condition

0 = initial value

Superscripts

D = constant electric displacement condition
S = constant strain condition

t = transpose operator

I. Introduction

URBOMACHINERY has been redesigned in recent years to

increase aerodynamic efficiency while decreasing drag, weight,
and complexity. However, these advances have also severely
decreased the damping typically intrinsic to turbomachinery blades,
leaving them susceptible to high-cycle fatigue due to large vibratory
stresses [1]. Beyond an extended lifetime, a reduction of the blade
vibration could also allow a reduction in blade thickness, which in
turn would further reduce the blade weight.

Turbomachinery blades have changing resonance frequencies due
to the very large centrifugal loads they experience. Furthermore, they
are subjected to excitation frequencies that are multiples of, and
therefore vary with, the blade rotation speed. This excitation arises as
a blade passes each of N stator vanes, producing an excitation
frequency of N times that of the blade rotation. These changing
resonance and excitation frequencies are often conveniently plotted
together in a Campbell diagram, shown in Fig. 1. The crossing of the
lines indicates where the blades will be excited resonantly, leading to
large vibration amplitudes.

Most passive piezoelectric-based vibration damping methods use
a shunt circuit narrowly tuned to a small set of excitation conditions.
While acceptable for many structures, these techniques are inade-
quate for application to structures with changing dynamics subjected
to multiple or changing excitation conditions, such as turbo-
machinery bladed disks. Although powered control systems
can usually provide the needed vibration reduction under such
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Fig. 1 Campbell diagram: natural frequencies (solid lines) and speed
lines (dashed lines) with engine orders.

conditions, they are essentially isolated from a sufficiently large
power source when located within the rotating frame of
turbomachinery.

A vibration reduction system that can operate within the rotating
frame and still apply to a wide range of vibration frequencies is
desirable. Such an approach is presented here, in which a structure
containing piezoelectric material is altered to detune its structural
resonance frequency from that of the varying excitation. Consider,
for example, an excitation associated with engine order N = 10, as
depicted in Fig. 2a. As the rotation speed increases and the excitation
frequency nears the resonance frequency of the structure, the
stiffness is altered to another state, thus avoiding a resonantlike
response (from 25, to 2S5, near 3940 rpm in Fig. 2a). When the
excitation frequency has passed this excitation/resonance crossing,
the stiffness can be returned to its initial state in anticipation of
subsequent crossings; this returning switch also preserves the
designed structural stiffness away from resonance. As presented
here, this switching is implemented through the piezoelectric
material: a change in its electrical boundary conditions changes the
mechanical stiffness of the material, and thus the entire structure.

Figure 2 also depicts a frequency-domain understanding of
detuning. With two stiffness states, there are two frequency response
curves from which to choose. The idea behind detuning is to choose
the lower response level. As such, for an increasing frequency sweep,
the structure would begin in the stiffer open-circuit state (OC) and
switch to the softer short-circuit state (SC) at the point circled in
Fig. 2b. However, a key assumption in this frequency-domain
analysis is harmonic motion, a simplification that is inherently
violated by the swept frequency excitation. For very slow sweeps,
this analysis may hold; it is expected, however, that a transient
vibration analysis is required for most sweeps of interest. Such an
analysis is presented here for a nominal structure containing
piezoelectric material subjected to an excitation with linearly varying
frequency. This analysis is carried out using nondimensional
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parameters to describe the system. Where numerical studies are
performed, a range of parameters appropriate for turbomachinery
blade operation is selected.

Note that this analysis applies to a single blade of a turbo-
machinery disk. In reality, blade dynamics are coupled, typically
with slight mistuning (variations in physical properties) between
blades that causes vibration localization [2]. As such, it is expected
that resonance frequency detuning will be implemented indepen-
dently on each blade; that is, separate blades will not, in general,
switch stiffness states simultaneously. The act of detuning will intro-
duce some additional stiffness mistuning between blades, although
for only a very short time until the excitation/resonance condition has
been passed. The duration of an altered stiffness state could be
prolonged however: for example, as an intentional mistuning that
may result in less blade vibration than random mistuning as
described by Castanier and Pierre [3] or Hou and Cross [4].

II. Background

Resonance frequency detuning provides vibration reduction by
altering the stiffness of a structure to avoid a resonant excitation
condition. While any stiffness state-switching mechanism could be
considered, piezoelectric material is especially attractive for the ease
with which its stiffness states can be realized. Furthermore, reso-
nance frequency detuning does not explicitly preclude the use of
other vibration reduction techniques; in fact, both detuning and other
piezoelectric-based approaches could conceivably use the same
material, although perhaps not simultaneously.

A. Piezoelectricity

Piezoelectric material has coupled electrical and mechanical
behavior that can be represented in several constitutive forms, each of
which employs its own coupling terms. The linear relations in stress-

field form are [5]
T, [ —¢ S
=15 @l ) ®

A more important term is the electromechanical coupling coefficient
k, which provides a measure of the material’s ability to convert
energy in each mode. Its square is the ratio of converted energy to the
total work imposed on the material. Furthermore, this definition
extends to a complete structure containing piezoelectric material and
is defined for each mode of vibration. A convenient form of the
coefficient depends only on the short- and open-circuit natural
frequencies; they are readily obtained experimentally via the elec-
trical boundary conditions and analytically through the solution to
two eigenvalue problems:

kz — q — a)(z)c - (l)%(. (2)
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Fig. 2 Resonance frequency detuning concept: a) two stiffness states (25, and 25,) with detuned stiffness (solid black line), and b) short-circuit (SC) and
open-circuit (OC) frequency response curves (dashed lines) and optimal response (solid line).
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B. Passive Piezoelectric-Based Vibration Reduction

A common method for exploiting the coupled electromechanical
properties is to shunt piezoelectric material with a passive circuit
element. This shunt changes the structural dynamics, thus altering
the vibration response. Hagood and von Flotow provided a thorough
treatment of a resistive shunt [6]. In this approach, the piezoelectric
material converts a portion of the strain energy of the structure to
electrical energy. The resistor dissipates this electrical energy as heat,
thus removing energy from the system and providing damping. The
performance is strongly frequency-dependent through the tuning of
the circuit resistance.

Although initially examined experimentally by Forward [7],
Hagood and von Flotow [6] also provided the first analytical
discussion of a resonant inductive shunt, interpreting the circuit as an
electrical analog to a mechanical dynamic vibration absorber . In this
case, the electrical energy from the piezoelectric material moves into
the resonant shunt circuit. As with the resistive shunt, optimal
performance requires tuning the circuit to the desired vibration; in
this case, the inductor must be tightly tuned to the frequency of
vibration and the resistor modulates the bandwidth of the shunt. Yu
and Wang extended this concept to a bladed disk, using a coupling
capacitance to form a network of piezoelectric material and shunt
circuits [8]. This piezoelectric network approach provides greater
vibration reduction for mistuned structures than using individual,
nominally identical shunt circuits on each blade.

Ideally, a vibration reduction system would work for multiple (or
even changing) vibration frequencies. One way to extend the
techniques is to include a dedicated piezoelectric material and shunt
circuit for each target frequency, although this approach quickly
becomes complex and unrealistic [9]. A more desirable approach is
to use several shunt circuits with a single piece of piezoelectric
material. Edberg et al. investigated this approach experimentally and
found that the shunts required concurrent tuning [10]. Recognizing
the difficulty of coupled tuning of all shunt circuits, Wu proposed
adding blocking circuits to each branch [11]. These circuits,
essentially band-stop filters, prevented each branch from influencing
the performance of the remaining branches. Behrens and Moheimani
took a similar but dramatically simpler approach, using a single
current flowing circuit on each branch: essentially bandpass
filters [12].

In addition to resistive and resonant inductive shunts, capacitive
shunts can also be of use in vibration reduction systems. Although
they do not provide inherent damping, capacitive shunts do change
the system dynamics by altering the piezoelectric material stiffness,
within the bounds of the short- and open-circuit stiffnesses. Davis
and Lesieutre used multiple capacitances to adaptively tune a
resonant shunt to a changing frequency [13]. This sort of tuning
could be used to track the changing frequency due to changes in the
blade rotation speed or even to avoid a resonant response at a
particular frequency by moving the resonance frequency away from
that of the excitation.

C. Semiactive Piezoelectric-Based Vibration Damping

Because of the complexity required to implement a passive system
targeting multiple modes, a tunable, semiactive approach is more
likely to be embedded in a turbomachinery blade. Common
semiactive approaches involve switching the state of the piezo-
electric material in a manner that reduces vibrations. Clark proposed
a state-switching concept that opens (stiffens) the material when the
structure is moving away from the static equilibrium position and
shorts (softens) it on the return to equilibrium [14]. It thus shorts the
material at peak strain energy, removing some of the stored
mechanical energy and reducing the corresponding vibration.

Richard et al. developed a similar approach termed “synchronized
switched damping” (SSD) [15]. Instead of shorting the material for
the entire return to the equilibrium position, this approach shorts it
only long enough for the charge to dissipate before returning it to the
open-circuit state. With an ideally instantaneous switch, this method
removes twice as much energy from the mechanical domain as Corr
and Clark’s technique [16].

Richard et al. enhanced the vibration reduction by switching on an
inductor, inverting the piezoelectric voltage [17]. This inductor can
be quite small compared with that of a resonant resistive—inductive
shunt; however, it must be large enough so that the inversion occurs
slowly compared with the switch duration. Lefeuvre et al. [18] and
Badel et al. [19] furthered this line of techniques by switching on a
voltage source. Of course, the voltage source requires significantly
more power and is perhaps better classified as an active approach.

These semiactive approaches work well for multiple modes and
have relatively low complexity, at least compared with a network of
passive shunts for vibration reduction. Inductor-based approaches
may be too large to embed in a turbomachinery blade; certainly, those
requiring large amounts of power are prohibitive in the rotating
frame. A key drawback of these state-switching approaches is the
need for onblade sensing of the peak deflection (piezoelectric
voltage) and rapid switching between shunts. Any delay in the peak
detection and switching mechanisms can significantly degrade the
vibration reduction performance. Furthermore, each of the above
techniques switch four times per vibration cycle; at high frequencies
in particular, this constraint can require large amounts of power,
although self-powered systems have been developed with some
added complexity.

Finally, these approaches are largely considered for implementa-
tion with a single patch of piezoelectric material. With multiple
patches targeting multiple vibration modes, separate circuits will, in
general, be needed for each patch for maximum vibration reduction.
Some approaches (e.g., SSD) require that two patches can switch
together only if they share the same compression or tension state;
sharing a peak detection circuit further assumes the entire blade
displaces together. While it is possible to strategically place the
material with common tension or compression states for a few
modes, it is almost certainly impossible to do so for all targeted
modes of vibration.

III. Dynamics Model

A proper analysis of the resonance frequency detuning concept
must exist in the time domain. As such, a dynamics model is ideal for
direct integration of the structure’s equations of motion. Because the
detuning concept makes use of only short- and open-circuit electrical
boundary conditions, only these limiting cases are required.
However, it is instructive to begin from a full model to demonstrate
how the various properties of the system combine to form the relevant
nondimensional parameters.

A low-order model of the turbomachinery blade and coupled
piezoelectric material dynamics provides an analytical tool to rapidly
design and simulate the performance of a particular vibration
reduction system. Used here is a model previously developed using
the assumed modes method [20,21]. The blade displacement is
written as a weighted sum of assumed shapes, with the weights
providing the generalized coordinates of the system. A computation
of the energy of the blade ultimately results in a set of discretized
equations of motion:

[MHI 0} il-')m [ CITI 0} wm
(B[ )
0 0flw, 0 O0|lw,
|:Km + QK, —K{.:| w,, F,
' L=t o
_Kc Ke_ ! w, F e
Because of the rotating nature of the turbomachinery, the dynamics
depend explicitly on the rotation speed 2. An accurate representation
of this dependence is necessary when designing an appropriate
vibration reduction treatment, particularly in light of changing
excitation frequencies, as indicated in Fig. 1. For example,
piezoelectric-based passive shunts target specific resonance
frequencies for vibration reduction; perhaps more important, the
centrifugal loads associated with rotation can alter the mode shapes.

As such, the piezoelectric material may be located in a region of high
modal strain for some rotation speeds but not others, leading to a
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rotation-dependent coupling coefficient. Furthermore, there remains
a possibility that the membrane loads the centrifugal loads induce
may alter the effective piezoelectric properties. Finally, note that the
equations of motion of the attached system, such as a shunt circuit,
can be directly incorporated into Eq. (3) using the generalized
coordinates and forces (for example, by writing the shunt governing
equation in terms of F, and w,).

As a second-order dynamical system, key information about the
system modes derive from the solution to the eigenvalue problem.
The eigenvalues provide the natural frequencies; the eigenvectors are
the assumed shape weights required to form the system mode shapes.
Recalling the electromechanical coupling of Eq. (1), the piezo-
electric material will provide the greatest performance if it is placed
in a region of high strain, a key result of the mode shape
determination.

Finally, piezoelectric material has two special electrical boundary
conditions: short and open circuits. As indicated in Eq. (2), natural
frequencies in these two cases form the important modal coupling
coefficient, a key metric used to predict the vibration reduction
potential in that particular mode for a given piezoelectric material,
size, shape, and location. Note also that these electrical boundary
conditions are readily produced experimentally, allowing for several
points of comparison between the model predictions and
experimental data.

The full form of Eq. (3) can have many parameters, so an initial
simplified analysis is preferred. A first step is to define the forcing
function; here, a swept sinusoidal frequency excitation of constant
magnitude represents the aerodynamic loading due to rotor—stator
passes [22]. Then, restricting the quantities in Eq. (3) to scalars
produces nine free parameters (including several that may vary with
time). Two parameters may be eliminated by assuming the spin-
stiffening or -softening does not vary in time and incorporating it into
the mechanical stiffness; that is, Q2K . is constant. A nondimensional
form can further reduce this complexity: scaling the time by the open-
circuit natural frequency, the mechanical generalized coordinate by
its open-circuit static quantity, and the electrical generalized
coordinate and force by their blocked static quantities reduces the
number of parameters to three (the modal mechanical damping ratio
¢, the electromechanical coupling coefficient &, and the phase of the
excitation ¢):

X420+ x— Q =sing(t)
—kKx+Q=V 4)
The phase of the excitation depends on the desired frequency

sweep and can contain multiple parameters. The instantaneous
frequency is the time derivative of the phase:

¢(f)

w(r) = ®)

so the required phase of excitation is found by integrating the desired
frequency sweep [23]. For a linear sweep w(f) = o + o,
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For simplicity, the constant part of the phase is often assumed as zero
(¥ =0, equivalent to taking fy = 0). Furthermore, sweeps are
considered with zero initial frequency at time ¢ = 0 so that oy = 0;
that is, the instantaneous frequency is w = at. Thus, the third free
parameter is the linear frequency-sweep rate o.

The sweep rate can be written in terms of the dimensional linear
frequency-sweep rate f,. and the open-circuit natural frequency of
the mode of interest f,:

— fl'ale
27 f?

()

An upper limit on « can be estimated for typical turbomachinery by
considering rapid sweep rates exciting low-frequency modes. For
example, a sweep rate of 50 Hz/s (corresponding to a rotation sweep
rate of 3000 rpm/s) exciting a mode at 100 Hz yields a ~ 1073
exciting amode at 1000 Hz yields & ~ 107> Certainly, higher engine
order excitation (e.g., N = 10 as in Fig. 1) will increase the sweep
rate by up to approximately an order of magnitude. In practice,
however, slower rotation sweep rates are expected to excite modes
with considerably higher frequencies, leading to values of « that are
several orders of magnitude lower.

A sample response using this nondimensional form is shown in
Fig. 3. With a sweep rate of & = 10~ and a mechanical modal
damping ratio of { = 0.1%, it is clear the transient response differs
from that obtained by a harmonic analysis. The peak transient
response level is approximately 50, an order of magnitude lower than
expected from a harmonic analysis (where the peak response is
approximately 1/2/¢=500). A second result is that the point of
maximum dynamic amplification occurs after the excitation fre-
quency passes the resonance frequency, as seen in Fig. 3b. These
results are by no means new; however, they are important when
designing a vibration reduction system for a structure subjected to a
rapidly varying excitation.

The equations of motion are readily reduced to a single mechanical
equation of motion in the two special cases of short and open circuits.
With an open-circuit condition, Q = 0, and the governing equation is

%+ 20k + x = sinp(r) ®)

In the case of a short-circuit condition, V =0, so Eq. (4) can be
written as

¥ 4208 + (1 — K)x = sin () )

These equations illustrate the role of the piezoelectric material in
altering the stiffness: a larger coupling coefficient k> results in a
larger separation between the two stiffness states, and thus greater
vibration reduction is expected. The solutions to the eigenvalue
problems associated with Eqgs. (8) and (9) also confirm Eq. (2).
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Fig. 3 Transient response (thin solid lines) and envelope (solid line) with steady-state response envelope (dashed line).
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The use of Egs. (8) and (9) is governed by a switching law:

short circuit  ® > Wgyiien
(10)

open circuit @ =< Wgyiich

From a frequency-based analysis, this optimal critical frequency
Wgwiren 18 the point where the short- and open-circuit frequency
response functions intersect, circled in Fig. 2b:

k2
Wswitch = - ? (1 1)

However, this critical frequency wg,;., at which the stiffness state
switches may depend on several factors. Neglecting the spin-
stiffening and -softening dynamics, the sweep rate (both magnitude
and sign), inherent mechanical damping, and electromechanical
coupling coefficient are the three free parameters of the system and
may influence the optimal switch trigger.

Detuning can be simulated by time integration of the appropriate
equation of motion, but this approach is very computationally
intensive for low sweep rates. Ultimately, the metric of performance
comparison used here is the absolute peak response. As such, actual
oscillatory behavior is relatively unimportant, at least compared with
the envelope of these oscillations. Thus, an approximation of the
response envelope as developed by Markert and Seidler [24] is
employed to significantly reduce computational complexity; alter-
natively, Henson provides an approximation of the vibratory re-
sponse without directly integrating the equations of motion [25].
These approaches do introduce some error; with the Markert and
Seidler approach [24], for example, the approximation overpredicts
the peak response and shifts the time at which it occurs. These shifts
(typically only a few percent) are displayed in Fig. 4. However, this
error is consistent and does allow an evaluation of potential switch
triggers. A particularly useful aspect of the approximation is that it
accommodates a slowly changing resonance frequency (e.g., spin-
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Fig. 4 Response envelopes obtained via approximation (solid line) and
direct numerical integration (dashed line) for detuning at «t = 0.98.
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stiffening and-softening), incorporating it into an effective excitation
frequency-sweep rate.

IV. Model Simulations and Experimental Data
A. Model Simulations

A key part of resonance frequency detuning is to switch stiffness
states at the correct (optimal) time. Switching too late essentially
maintains the open-circuit response (for an increasing sweep) and
can even increase the blade vibration. Switching too soon can result
in large dynamic amplification associated with the short-circuit
resonance. This variation in response level and need for an optimal
switch trigger is shown in Fig. 5. With a modal damping ratio of
¢ =0.1%, an electromechanical coupling coefficient of k*> = 4%,
and a frequency-sweep ratio of @ = 107*, the structure begins in the
stiffened open-circuit state. At a specific switch trigger, the structure
is switched to its short-circuit state. A number of such triggers is
considered; the one that produces the lowest peak response level is
determined to be optimal and can be found for any combination of
sweep rate, damping ratio, and coupling coefficient. This optimal
trigger (at)* = 0.991 is found in Fig. 5b by the minimum of the peak
response level curve; the corresponding response is shown in Fig. 5a.

The optimal switch trigger can, in general, depend on the sweep
rate, modal damping, and coupling coefficient; however, Fig. 6
indicates that it is primarily a function of coupling coefficient. There
appears to be little difference between optimal switch triggers for a
wide variety (135 in total) of sweep rate and modal damping
combinations. The disparity at very low coupling can be largely
ignored since it corresponds to relatively little vibration reduction:
the optimal switch trigger is determined by finding the minimum
peak response, and low coupling means a wide range of switch
triggers provide the same vibration reduction (more accurately, the
lack of vibration reduction). Some additional straying points arise
similarly due to little vibration reduction for very rapid sweeps.
Regardless, any variation with sweep rate and modal damping is
small. Note, however, that the curves are close to but not exactly the
optimal switch trigger expected from a frequency-domain analysis,
as in Eq. (11). Instead, the trigger is slightly higher in frequency (or
later in time) for these increasing frequency-sweep excitations.

The vibration reduction provided by resonance frequency
detuning does vary significantly with sweep rate, modal damping,
and coupling coefficient. Anincrease in any of these three parameters
provides greater absolute vibration reduction; however, it is useful to
consider the peak response normalized to that of an identical but
unswitched open-circuit structure to identify the conditions that are
most favorable to detuning. These effects are shown in Fig. 7 using a
baseline sweep rate o = 107, modal damping ¢{=0.1%, and
coupling coefficient k> = 4.0%. Figure 7a shows that both high
coupling and low sweep rate provide greater normalized vibration
reduction. Similarly, Fig. 7b indicates that low modal damping and
low sweep rate lead to better detuning performance, although not
necessarily greater absolute vibration reduction. An interesting
aspect of the performance is better displayed in Figs. 7c and 7d,

140 T T
Short-Circuit A
130} Open-Circuit
esponse Peak Response Pea
@ 120|
2
o 110
(/]
[
< 100(
K Switched
90| Response
Peak
80|
0.97 0.98 0.99 1 1.01
Frequency Switch Trigger (ot)*
b)

Fig. 5 Resonance frequency detuning performance: a) response envelopes for SC, OC, and switched (thin solid lines) states, with optimal response (solid
line), and b) peak response of system switched at a frequency switch trigger (af); corresponds to dotted line in Fig. Sa.
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Fig. 6 Optimal switch trigger from transient (thin solid lines) and
harmonic (solid line) analyses.
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which show that coupling coefficient and modal damping really only
play arole when the sweep rate is low enough. At higher sweep rates,
the dynamic response is limited almost entirely by the rapid sweep,
so the coupling coefficient and modal damping have little effect.
However, these sweep rates are quite high, at least compared with
those expected in turbomachinery operation. In general, detuning
provides the greatest vibration reduction for structures with low
modal damping subjected to low sweep rates.

While the normalized response analysis provides insight into the
ideal conditions for detuning performance, it does not consider the
absolute vibration level. Without detuning, the vibration could also
be reduced by increasing the sweep rate or modal damping, although
this approach is often difficult to implement. Nonetheless, it provides
an alternative way to view the detuning performance: by considering
what increase in sweep rate or modal damping is required to achieve
the equivalent vibration reduction. Again using a baseline sweep rate
a = 10"* and modal damping ¢ = 0.1% (hardly ideal in light of
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Fig. 9 Representative metallic blade with surface-mounted monolithic
piezoelectric patch. Stiffness state is switched via relays in foreground.

Fig. 7), Fig. 8 shows that, even for small coupling coefficients,
significant increases in sweep rate or modal damping would be
required. For a moderate coupling coefficient k> = 10%, detuning
provides the same vibration reduction as increasing the sweep rate or
modal damping by an order of magnitude. This effect is magnified for
slower sweeps or less damping: with a sweep rate of « = 107> and a
modal damping of ¢ =0.01%, a coupling coefficient of k*> = 3%
provides equivalent vibration reduction as an order of magnitude
increase in sweep rate or modal damping.

B. Experimental Data

Blades are analyzed experimentally in the stationary frame.
Figure 9 shows a representative trapezoidal titanium flat plate with
surface-mounted piezoelectric material patches. For this particular
plate, two Midé QP10w patches (one shown and one on the reverse
side of the plate) are mounted near the plate tip. All blades are
mounted with cantilever boundary conditions to the shaker armature.
A dSPACE system controls the shaker in addition to capturing the
blade response through a combination of accelerometer and laser
vibrometer signals.

The initial experimental testing focuses on two modes of interest:
the two-stripe and third bending modes have open-circuit resonance
frequencies at 664.3 and 785.1 Hz and blade coupling coefficients of
0.0886 and 0.0691, respectively. Figure 10 shows the vibration
reduction possible for the two-stripe mode. With a sweep rate of
approximately & = 107> and modal damping of { = 0.08%, optimal
switching of the piezoelectric material’s electrical boundary condi-
tions can reduce the vibration by 20%. Simulations indicate slightly
larger vibration reductions are possible, although performance is
sensitive to the system parameters. Because of the very low intrinsic
damping of the blade, however, even small increases in effective
damping can result in large vibration reductions.
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Fig. 10 Resonance frequency detuning experimental performance
(circles) and simulated results (solid line) for many frequency-based
switch triggers.

V. Conclusions

The ultimate goal of this research is to reduce the large vibration
experienced by turbomachinery bladed disks via piezoelectric-based
damping or vibration control. Analytical simulations predict and
experimental data confirm that resonance frequency detuning can
reduce this vibration by altering the structural stiffness to detune it
from the excitation, thus avoiding a resonant response. By requiring
only two switches per excitation/resonance frequency crossing,
detuning is significantly less sensitive to the switching time and
requires less power than typical semiactive approaches that switch
multiple times per vibration cycle; more important, it may provide a
more realistic implementation in turbomachinery. The timing of the
detuning is important and varies primarily with the coupling
coefficient, although a more general understanding of the optimal
switch trigger is required before implementation. With optimal
switching, the amount of dynamic amplification is governed by the
system’s inherent mechanical damping, the system modal electro-
mechanical coupling coefficient, and the excitation frequency-sweep
rate. Resonance frequency detuning is ideal for structures with low
modal damping subjected to slow frequency-sweep excitation;
however, an increase in coupling coefficient, modal damping, or
sweep rate will reduce the structural response for an optimal switch
trigger.
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